4.5 Article

Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 122, Issue 49, Pages 11626-11639

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.8b07537

Keywords

-

Funding

  1. German Research Foundation (CRC 902: Molecular Principles of RNA Based Regulation)
  2. Max Planck Society
  3. Swiss National Science Foundation

Ask authors/readers for more resources

We combine single-molecule Forster resonance energy transfer (single-molecule FRET) experiments with extensive all-atom molecular dynamics (MD) simulations (>100 mu s) to characterize the conformational ensembles of single-stranded (ss) DNA and RNA in solution. From MD simulations with explicit dyes attached to single-stranded nucleic acids via flexible linkers, we calculate FRET efficiencies and fluorescence anisotropy decays. We find that dispersion-corrected water models alleviate the problem of overly abundant interactions between fluorescent dyes and the aromatic ring systems of nucleobases. To model dye motions in a computationally efficient and conformation ally exhaustive manner, we introduce a dye-conformer library, built from simulations of dinucleotides with covalently attached dye molecules. We use this library to calculate FRET efficiencies for dT(19), dA(19), and rA(19) simulated without explicit labels over a wide range of salt concentrations. For end-labeled homopolymeric pyrimidine ssDNA, MD simulations with the parmBSC1 force field capture the overall trend in salt-dependence of single-molecule FRET based distance measurements. For homopolymeric purine ssRNA and ssDNA, the DESRES and parmBSC1 force fields, respectively, provide useful starting points, even though our comparison also identifies clear deviations from experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available