4.6 Article

Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media

Journal

JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS
Volume 170, Issue -, Pages 285-294

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpba.2018.12.032

Keywords

Deep eutectic solvents; Flos Sophorae Immaturus; Microwave-assisted extraction; Kinetic; Recoveries; Flavonoids

Funding

  1. National Key R&D Program of China [2016YFD0600805]
  2. Fundamental Research Funds for the Central Universities [2572017EA03, 2572014EA03, DL13CA10]

Ask authors/readers for more resources

In the face of the many shortcomings of conventional organic solvents in the age of green chemistry, deep eutectic solvents (DESs) appear under the spotlight of natural product extraction because of its outstanding advantages. In this study, the extraction of six compounds from Flos Sophorae Immaturus (FSI) with DES-5 (choline chloride/1,4-butanediol) as its topgallant solvent was determined by screening nine DESs. After single factor test and BBD experiment, the optimum conditions of deep eutectic solvent based microwave-assisted extraction (DES-MAE) were: choline chloride/1,4-butanediol (molar ratio of 1:2) and water content (25%, v/v), time 20 min, microwave power 600 W, temperature 62 degrees, liquid/solid ratio 26 mL/g. The extraction yields of rutin, nicotiflorin, narcissin, quercetin, kaempferol and isorhamnetin were 116.78, 15.01, 23.85, 27.59, 3.09 and 3.33 mg/g, respectively. The kinetic experiment results showed that DES-MAE has significant advantages in the extraction of six compounds. The experimental results showed that DES-MAE could obtain higher yields of target components in a short time than other methods (DES-HRE, DES-UAE and Ethanol-MAE). In addition, the target components were separated from the DES extraction solution, and the recoveries of the target compounds were in the range of 75.5%-84.1%. Therefore, this paper provides a strategy for extraction and separation, the aim of which is to obtain flavonoids from FSI efficiently. Meanwhile, this study can also be used as an alternative to the traditional methods for obtaining bioactive components from plant sources in biochemistry, food industry and pharmaceutical fields. (C) 2018 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available