4.3 Article

Promotion of osteogenesis by bioactive glass-ceramic coating: Possible involvement of the Hedgehog signaling pathway

Journal

JOURNAL OF ORTHOPAEDIC SCIENCE
Volume 24, Issue 4, Pages 731-736

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jos.2018.12.006

Keywords

-

Categories

Funding

  1. National Natural Science Funds of China [81460390, 81760531]

Ask authors/readers for more resources

Purpose: Bioactive glasseceramic (BGC) coatings have been extensively studied and clinically used as bone substitute materials because of their osteogenesis, osteoinduction, and osteoconduction characteristics. Although the Hedgehog (Hh) signaling pathway plays an important role in skeletal development, the relationship between BGC coatings and the Hh signaling pathway is unknown. Methods: In this study, a BGC coating is fabricated by furnace sintering, and its surface is investigated by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Furthermore, the expression of Ki67 is evaluated using immunofluorescence, and osteogenesis-related factors and Hh signaling pathway molecules on the BGC coating are examined by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and Western blotting in bone marrow mesenchymal stem cells (BMSCs). Results: The SEM and the TEM show that the BGC coating surface is smooth, without cracks, and composed of particles with mesoporous structure. The expression of Ki67 positive BMSCs of the BGC group is higher than that of the control group. Real-time RT-PCR and Western blotting assay reveal that the expression levels of osteoblast-related genes (BMP2, Osteocalcin, ALP, Runx2) and Hh signaling pathway molecules (Gli1, Smo) are much higher for the BGC coating group than those for the control group. Furthermore, after treating with Smo inhibitor cyclopamine, the Smo and Gli1 expressions in BMSCs are dramatically down-regulation for the BGC coating compared to those for the control group. Both mRNA and protein expression levels of osteogenesis-related factors was downregulated after treating Smo inhibitor cyclopamine in BMSCs with the BGC coating. Conclusions: The BGC coatings promote osteogenesis probably via the Hh signaling pathway, which provides a theory reference for future clinical application of bone formation. (c) 2019 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available