4.7 Article

A Predictive Tool for Electrophilic Aromatic Substitutions Using Machine Learning

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 84, Issue 8, Pages 4695-4703

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.8b02270

Keywords

-

Ask authors/readers for more resources

At the early stages of the drug development process, thousands of compounds are synthesized in order to attain the best possible potency and pharmacokinetic properties. Once successful scaffolds are identified, large libraries of analogues are made, which is a challenging and time-consuming task. Recently, late stage functionalization (LSF) has become increasingly prominent since these reactions selectively functionalize C-H bonds, allowing to quickly produce analogues. Classical electrophilic aromatic halogenations are a powerful type of reaction in the LSF toolkit. However, the introduction of an electrophile in a regioselective manner on a drug-like molecule is a challenging task. Herein we present a machine learning model able to predict the reactive site of an electrophilic aromatic substitution with an accuracy of 93% (internal validation set). The model takes as input a SMILES of a compound and uses six quantum mechanics descriptors to identify its reactive site(s). On an external validation set, 90% of all molecules were correctly predicted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available