4.7 Article Proceedings Paper

Adaptive Polynomial Rendering

Journal

ACM TRANSACTIONS ON GRAPHICS
Volume 35, Issue 4, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2897824.2925936

Keywords

Adaptive rendering; image-space reconstruction; Monte Carlo ray tracing

Ask authors/readers for more resources

In this paper, we propose a new adaptive rendering method to improve the performance of Monte Carlo ray tracing, by reducing noise contained in rendered images while preserving high-frequency edges. Our method locally approximates an image with polynomial functions and the optimal order of each polynomial function is estimated so that our reconstruction error can be minimized. To robustly estimate the optimal order, we propose a multi-stage error estimation process that iteratively estimates our reconstruction error. In addition, we present an energy-preserving outlier removal technique to remove spike noise without causing noticeable energy loss in our reconstruction result. Also, we adaptively allocate additional ray samples to high error regions guided by our error estimation. We demonstrate that our approach outperforms state-of-the-art methods by controlling the tradeoff between reconstruction bias and variance through locally defining our polynomial order, even without need for filtering bandwidth optimization, the common approach of other recent methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available