4.6 Article

Treatment with DHA Modifies the Response of MDA-MB-231 Breast Cancer Cells and Tumors from nu/nu Mice to Doxorubicin through Apoptosis and Cell Cycle Arrest

Journal

JOURNAL OF NUTRITION
Volume 149, Issue 1, Pages 46-56

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jn/nxy224

Keywords

docosahexaenoic acid; apoptosis; cell cycle; triple negative breast cancer

Funding

  1. Canadian Institutes of Health Research [RES0016214]

Ask authors/readers for more resources

Background: Docosahexaenoic acid (DHA) has been shown to reduce growth of breast cancer cells in vitro and in vivo; it may also benefit the action of cytotoxic cancer drugs. The mechanisms for these observations are not completely understood. Objectives: We sought to explore how pretreatment of MDA-MB-231 breast cancer cells with DHA alters gene expression with doxorubicin (DOX) treatment and confirm that feeding DHA to tumor-bearing nu/nu mice improves the efficacy of DOX. Methods: MDA-MB-231 cells were subjected to 4 conditions: a control mixture of 40 mu M linoleic and 40 mu M oleic acid (OALA), DHA (60 mu M plus OALA), OALA DOX (0.41 mu M), or DHA DOX (plus OALA) and assessed for effects on viability and function. Female nu/nu mice (6 wk old) bearing MDA-MB-231 tumors were randomly assigned to a nutritionally complete diet (20 g +/- 2.8 g DHA/100 g diet) containing a polyunsaturated: saturated fat ratio of 0.5, with or without injections 2 times/wk of 5 mg DOX/kg for 4 wk. Results: Microarray and protein analysis indicated that DHA DOX cells, compared with OALA DOX, had upregulated expression of apoptosis genes, Caspase-10 (1.3-fold), Caspase-9 (1.4-fold), and Receptor (TNFRSF)-interacting serinethreonine kinase 1 (RIPK1) (1.2-fold), while downregulating cell cycle genes, Cyclin B1 (-2.1-fold), WEE1 (-1.6-fold), and cell division cycle 25 homolog C (CDC25C) (-1.8-fold) (P < 0.05). DHA DOX-treated mice had 50% smaller tumors than control mice (P < 0.05). Analysis of proapoptotic proteins from tumors of DHA DOX mice showed increased Caspase-10 (by 68%) and BH3 interacting domain death agonist (Bid) (by 50%), decreased B-cell CLL/lymphoma 2 (BCL2) (by 24%), and decreased cell cycle proteins Cyclin B1 and Cdc25c (both by 42%), compared with control mice (P < 0.05). Conclusions: Supplementation with DHA facilitates the action of DOX in MDA-MB-231 cells and in nu/nu mice, which may occur via amplification of the effect of DOX on apoptosis and cell cycle genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available