4.7 Article Proceedings Paper

Computational Design of Reconfigurables

Journal

ACM TRANSACTIONS ON GRAPHICS
Volume 35, Issue 4, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2897824.2925900

Keywords

Computational design

Funding

  1. Direct For Computer & Info Scie & Enginr
  2. Div Of Information & Intelligent Systems [1409310, 1409286] Funding Source: National Science Foundation

Ask authors/readers for more resources

A reconfigurable is an object or collection of objects whose transformation between various states defines its functionality or aesthetic appeal. For example, consider a mechanical assembly composed of interlocking pieces, a transforming folding bicycle, or a space-saving arrangement of apartment furniture. Unlike traditional computer-aided design of static objects, specialized tools are required to address problems unique to the computational design and revision of objects undergoing rigid transformations. Collisions and interpenetrations as objects transition from one configuration to another prevent the physical realization of a design. We present a software environment intended to support fluid interactive design of reconfigurables, featuring tools that identify, visualize, monitor and resolve infeasible configurations. We demonstrate the versatility of the environment on a number of examples spanning mechanical systems, urban dwelling, and interlocking puzzles, some of which we then realize via additive manufacturing. Spatial-temporal information about collisions between objects is presented to the designer according to a cascading order of precedence. A designer may quickly determine when, and then where, and then how objects are colliding. This precedence guides the design and implementation of our four-dimensional spacetime bounding volume hierarchy for interactive-rate collision detection. On screen, the designer experiences a suite of interactive visualization and monitoring tools during editing: timeline notifications of new collisions, picture-in-picture windows for tracking collisions and suggestive hints for contact resolution. Contacts too tedious to remove manually can be eliminated automatically via our proposed constrained numerical optimization and swept-volume carving.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available