4.7 Article

The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy

Journal

JOURNAL OF NEUROINFLAMMATION
Volume 16, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12974-019-1401-z

Keywords

Phagocytosis; Brain myeloid cells; Superresolution; Structured illumination microscopy; Stroke

Funding

  1. Italian Ministry of Health [43/2017, cc-2015-2365332]

Ask authors/readers for more resources

BackgroundPhagocytosis is a key function of myeloid cells and is highly involved in brain ischemic injury. It has been scarcely studied in vivo, thus preventing a deep knowledge of the processes occurring in the ischemic environment. Structured illumination microscopy (SIM) is a superresolution technique which helps study phagocytosis, a process involving the recruitment of vesicles sized below the resolution limits of standard confocal microscopy.MethodsMice underwent permanent occlusion of the middle cerebral artery and were sacrificed at 48h or 7days after insult. Immunofluorescence for CD11b, myeloid cell membrane marker, and CD68, lysosomal marker was done in the ischemic area. Images were acquired using a SIM system and verified with SIM check. Lysosomal distribution was measured in the ischemic area by the gray level co-occurrence matrix (GLCM). SIM dataset was compared with transmission electron microscopy images of macrophages in the ischemic tissue at the same time points. Cultured microglia were stimulated with LPS to uptake 100nm fluorescent beads and imaged by time-lapse SIM. GLCM was used to analyze bead distribution over the cytoplasm.ResultsSIM images reached a resolution of 130nm and passed the quality control diagnose, ruling out possible artifacts. After ischemia, GLCM applied to the CD68 images showed that myeloid cells at 48h had higher angular second moment (ASM), inverse difference moment (IDM), and lower entropy than myeloid cells at 7days indicating higher lysosomal clustering at 48h. At this time point, lysosomal clustering was proximal (<700nm) to the cell membrane indicating active target internalization, while at 7days, it was perinuclear, consistent with final stages of phagocytosis or autophagy. Electron microscopy images indicated a similar pattern of lysosomal distribution thus validating the SIM dataset. GLCM on time-lapse SIM from phagocytic microglia cultures revealed a temporal decrease in ASM and IDM and increase in entropy, as beads were uptaken, indicating that GLCM informs on the progression of phagocytosis.ConclusionsGLCM analysis on SIM dataset quantitatively described different phases of macrophage phagocytic behavior revealing the dynamics of lysosomal movements in the ischemic brain indicating initial active internalization vs. final digestion/autophagy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available