4.4 Article

A multiscale scheme for simulating polymer Tg

Journal

JOURNAL OF MOLECULAR MODELING
Volume 24, Issue 12, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00894-018-3867-5

Keywords

Multiscale simulations; Glass transition temperatures; Bulk polymers

Funding

  1. Natural Science Foundation of Hunan Province [2017JJ2125]
  2. Planned Science and Technology Project of Hunan Province [2016TP1028]
  3. Innovative Research Team in Higher Educational Institute of Hunan Province
  4. Talent Support Plan of Hunan University of Humanities Science & Technology (HUHST)

Ask authors/readers for more resources

All-atomistic (AA) molecular dynamics (MD) is considered as one of the desirable methods for studying glass transition temperatures (Tg) of specific polymers. However, heavy computational efforts are generally required, and the simulated Tg values are not always in good agreement with the experimental data. In this work, a multiscale scheme is proposed: first, the structural and volumetric properties based multiscale modeling is employed to parameterize the coarse-grained (CG) potentials against the AA simulations of an oligomeric melt; with the CG potentials, MD simulations are then carried out on a serial of oligomer bulks and polymer systems of interests, for which the dynamical Tg values are determined. With poly(ethylene oxide) and poly(methyl methacrylate) as typical examples, the simulated dynamical Tg values of the oligomeric bulks exhibit a linear relation with the empirical values, which is used to determine the actual Tg for the polymer bulk. The so-obtained Tg is found to compare very well with the experimental data. Such a computational framework can be quite promising in investigating the effects of various complex factors on polymer Tg.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available