4.6 Article

Compression of CT Images using Contextual Vector Quantization with Simulated Annealing for Telemedicine Application

Journal

JOURNAL OF MEDICAL SYSTEMS
Volume 42, Issue 11, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10916-018-1090-7

Keywords

Compression; Contextual vector quantization; Region growing; Code book; Telemedicine

Funding

  1. DST under IDP scheme [IDP/MED/03/2015]

Ask authors/readers for more resources

The role of compression is vital in telemedicine for the storage and transmission of medical images. This work is based on Contextual Vector Quantization (CVQ) compression algorithm with codebook optimization by Simulated Annealing (SA) for the compression of CT images. The region of interest (foreground) and background are separated initially by region growing algorithm. The region of interest is encoded with low compression ratio and high bit rate; the background region is encoded with high compression ratio and low bit rate. The codebook generated from foreground and background is merged, optimized by simulated annealing algorithm. The performance of CVQ-SA algorithm was validated in terms of metrics like Peak to Signal Noise Ratio (PSNR), Mean Square Error (MSE) and Compression Ratio (CR), the result was superior when compared with classical VQ, CVQ, JPEG lossless and JPEG lossy algorithms. The algorithms are developed in Matlab 2010a and tested on real-time abdomen CT datasets. The quality of reconstructed image was also validated by metrics like Structural Content (SC), Normalized Absolute Error (NAE), Normalized Cross Correlation (NCC) and statistical analysis was performed by Mann Whitney U Test. The outcome of this work will be an aid in the field of telemedicine for the transfer of medical images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available