4.6 Article

Elastic, plastic, and creep mechanical properties of lithium metal

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 54, Issue 3, Pages 2585-2600

Publisher

SPRINGER
DOI: 10.1007/s10853-018-2971-3

Keywords

-

Funding

  1. Ford-University Michigan Alliance program [UM0163]
  2. Army Research Laboratory

Ask authors/readers for more resources

With the potential to dramatically increase energy density compared to conventional lithium ion technology, lithium metal solid-state batteries (LMSSB) have attracted significant attention. However, little is known about the mechanical properties of Li. The purpose of this study was to characterize the elastic and plastic mechanical properties and creep behavior of Li. Elastic properties were measured using an acoustic technique (pulse-echo). The Young's modulus, shear modulus, and Poisson's ratio were determined to be 7.82GPa, 2.83GPa, and 0.381, respectively. To characterize the stress-strain behavior of Li in tension and compression, a unique load frame was used inside an inert atmosphere. The yield strength was determined to be between 0.73 and 0.81MPa. The time-dependent deformation in tension was dramatically different compared to compression. In tension, power law creep was exhibited with a stress exponent of 6.56, suggesting that creep was controlled by dislocation climb. In compression, time-dependent deformation was characterized over a range of stress believed to be germane to LMSSB (0.8-2.4MPa). At all compressive stresses, significant barreling and a decrease in strain rate with increasing time were observed. The implications of this observation on the charge/discharge behavior of LMSSB will be discussed. We believe the analysis and mechanical properties measured in this work will help in the design and development of LMSSB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available