4.8 Review

Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 49, Issue 7, Pages 1369-1378

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.6b00163

Keywords

-

Funding

  1. Singapore A*STAR SERC Public Sector Research Funding (PSF) [R-143-000-618-305]
  2. National University of Singapore [R-143-000-599-112]

Ask authors/readers for more resources

CONSPECTUS: Even though seminal reports on phosphine catalysis appeared in the 1960s, in the last few decades of the past century trivalent phosphines were viewed primarily as useful ligands for transition-metal mediated processes. The 1990s saw revived interest in using phosphines in organic catalysis, but the key advances in asymmetric phosphine catalysis have all come within the past decade. The uniqueness of phosphine catalysis can be attributed to the high nudeophilicity of the phosphorus atom. In typical phosphine-catalyzed reactions, nudeophilic attacks of the phosphorus atom on electron-deficient multiple bonds create different reactive ylide-type intermediates. When such structurally diverse zwitterionic species react with a variety of suitable substrates, new reaction patterns are often discovered and a diverse array of reactions can be developed. In recent years, substantial progress has been made in the field of asymmetric phosphine catalysis; many new reactions have been discovered, and numerous enantioselective processes have been reported. However, we felt that powerful and versatile phosphine catalysts that can work for a wide range of asymmetric reactions are still lacking. We therefore set our goal to develop a family of easily derived phosphine catalysts that are efficient in asymmetric induction for a broad range of phosphine-mediated transformations. This Account describes our efforts in the past few years on the development of amino acid-based bifunctional phosphines and their applications to enantioselective processes. Building upon our previous success in primary-amine-mediated enamine catalysis, we first established that bifunctional phosphines could be readily prepared from amino acids. In most of our studies, we chose threonine as the key backbone for catalyst development, and threonine-based monoamino acid or dipeptide bifunctional phosphines have displayed remarkable stereochemical control. We began our investigations by demonstrating the usefulness of our phosphine catalysts in aza-Morita Baylis Hillinan (aza-MBH) and MBH reactions. We then showed the great power of amino acid/dipeptide phosphines in a wide range of [3 + 2] annulation processes, including [3 + 2] cydoaddition of allenoates to acrylates/acrylamides, [3 + 2] annulation of imines with allenoates, and [3 + 2] cyclization employing MBH carbonates and activated alkenes. By utilizing a-substituted allenoates and activated alkenes, we developed an enantioselective [4 + 2] annulation to access functionalized cyclohexenes. We also devised a novel enantioselective [4 + 2] annulation process by using a-substituted allenones for the construction of 3,4-dihydropyrans. With the use of beta-acetate allenoate, a [4 + 1] annulation process has been designed to access chiral spiropyrazolones. Another array of reactions that make use of the basicity of zwitterionic phosphonium enolate intermediates have been successfully attained, including the first phosphine-catalyzed asymmetric Michael addition, enantioselective allylic substitution of MBH carbonates by phthalides, and enantioselective gamma-additions of prochiral 3-substituted oxindoles, 5H-thiazol-4-ones, 5H-oxazol-4-ones, and oxazol-5-(4H)-ones to 2,3-butadienoates. Bifunctional modes of action in our reported reactions have been supported by experimental results and theoretical studies. With the establishment of the new families of powerful amino acid-derived bifunctional phosphines, the discovery of new modes of phosphine activation, unknown reactions, and more enantioselective processes are well-anticipated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available