4.3 Article

Pressurized liquid extraction of six tetracyclines from agricultural soils

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/03601234.2018.1530547

Keywords

Soil; extraction; tetracyclines; antibiotics; accelerated solvent extraction; pressurized liquid extraction

Funding

  1. National Institute of Food and Agriculture, U.S. Department of Agriculture [2010-65102-20407]
  2. USDA [W-3045]

Ask authors/readers for more resources

Veterinary antibiotics used in agriculture can be introduced into the environment through land application of animal manure, accumulating in soils and groundwaters and posing a significant risk to human health and animal well-being. As the analysis of tetracyclines in soil is challenging due to their strong interaction with soil minerals and organic carbon, the objective of this study was to develop a reliable and reproducible method for quantitative analysis of chlortetracycline and oxytetracycline, and their respective metabolites in soils. A method based on pressurized liquid extraction (PLE) with in-cell clean-up was developed for the extraction of chlortetracycline and oxytetracycline and four likely metabolites from a set of four soils. Optimized conditions included a cell size of 22 mL, soil loading of 5 g, pH of 8.0, methanol:water ratio of 3:1, 50 degrees C, and two cycles. Soil extracts were analysed by high-performance liquid chromatography (HPLC) coupled with ion trap mass spectrometry (MS). Recoveries of seven tetracyclines from soil ranged from 41% to 110%. The limits of detection for tetracyclines were 0.08-0.3 mu g g(-1) soil, and intra- and inter-day variation ranged from 0.12-0.34%. The proposed PLE method is suitable for quantification of tetracyclines in agricultural soils at typical concentrations expected in contaminated environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available