4.4 Article

Estimation of Remaining Useful Lifetime of Lithium-Ion Battery Based on Acoustic Emission Measurements

Publisher

ASME
DOI: 10.1115/1.4042234

Keywords

-

Categories

Ask authors/readers for more resources

Lithium-ion battery (LIB) utilization as energy storage device in electric and hybrid-electric vehicles, wind turbine systems, a number of portable electrical devices, and in many other application fields is encouraged due to LIB small size alongside high energy density. Monitoring of LIB health state parameters, calculation of additional LIB operating parameters, and the fulfillment of safety requirements are provided through battery management systems. Prediction of remaining useful lifetime (RUL) of LIB and state-of-health (SoH) estimation are identified as still challenging and not completely solved tasks. In this contribution, previous works on RUL/SoH estimation, mainly relied on modeling of underlying electrochemical processes inside LIB, are compared with newly developed approach. The proposed approach utilizes acoustic emission measurements for LIB aging indicators estimation. Developed model for RUL estimation is closely related to frequency spectrum analysis of captured acoustic emission (AE) signal. Features selected from AE measurements are considered as model inputs. The novelty of this approach is the opportunity to estimate RUL/SoH of LIB without necessity to capture some intermediate variables, only indirectly related to RUL/SoH (charging/discharging currents, temperature, and similar). The proposed approach provides the possibility to obtain reliable information about current RUL/SoH without the knowledge about underlying physical processes occurred in LIB. Experimental data sets gathered from LIB aging tests are used for model establishment, training, and validation. The experimental results demonstrate the applicability of the novel approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available