4.4 Article Proceedings Paper

EnergyPlus Integration Into Cosimulation Environment to Improve Home Energy Saving Through Cyber-Physical Systems Development

Publisher

ASME
DOI: 10.1115/1.4042224

Keywords

-

Categories

Funding

  1. [70 NANB17H039]

Ask authors/readers for more resources

This paper presents a co-simulation platform which combines a building simulation tool with a cyber-physical systems (CPS) approach. Residential buildings have a great potential of energy reduction by controlling home equipment based on usage information. A CPS can eliminate unnecessary energy usage on a small, local scale by autonomously optimizing equipment activity, based on sensor measurements from the home. It can also allow peak shaving from the grid if a collection of homes are connected. However, lack of verification tools limits effective development of CPS products. The present work integrates EnergyPlus, which is a widely adopted building simulation tool, into an opensource development environment for CPS released by the National Institute of Standards and Technology (NIST). The NIST environment utilizes the IEEE high-level architecture (HLA) standard for data exchange and logical timing control to integrate a suite of simulators into a common platform. A simple CPS model, which controls local heating, ventilation, and cooling (HVAC) temperature set-point based on environmental conditions, was tested with the developed co-simulation platform. The proposed platform can be expanded to integrate various simulation tools and various home simulations, thereby allowing for cosimulation of more intricate building energy systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available