4.1 Article

Effect of surface treatment of natural reinforcement on thermal and mechanical properties of vinyl ester/polyurethane interpenetrating polymer network-based biocomposites

Journal

JOURNAL OF ELASTOMERS AND PLASTICS
Volume 52, Issue 1, Pages 29-52

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0095244318819214

Keywords

Interpenetrating polymer network; vinyl ester; polyurethane; kenaf fibre; vinyl silane treatment; biocomposite

Ask authors/readers for more resources

Kenaf fibre-reinforced vinyl ester (VE)/polyurethane (PU) interpenetrating polymer network (IPN)-based composites were made by hand lay-up technique. The kenaf bast fibre was chemically treated with 3, 6 and 9% vinyl silane. Treated fibres were characterized in terms of crystallinity, mechanical strength, density, thermal property and morphology. In comparison with the untreated fibre, 6% silane-treated fibres showed 25.4% higher % crystallinity, 66.9% increase in modulus elasticity and 604.2% increase in tenacity. Comparison of the pure VE with VE/PU IPN showed that the IPN had 3.3% lower modulus but 26.4% higher toughness than the former. Composites based on pure VE matrix and VE/PU IPN matrix were manufactured with the variation of untreated and treated fibre loading as 15, 20, 25, 30, 35 and 40 wt%. Novelty of this work lies in the modification of both the fibre surface and the matrix system simultaneously with the aim of increasing the adhesion between the fibre surface and matrix material of the composite. Composites with untreated fibres showed poor strength compared to that with modified fibres having corresponding compositions. IPN-based composites, with 35 wt% silane-treated fibre, showed improvement in tensile modulus by 16.61% and flexural modulus by 6.35% than pure VE-based composites with corresponding fibre loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available