4.7 Article

Extreme Cold Wave over East Asia in January 2016: A Possible Response to the Larger Internal Atmospheric Variability Induced by Arctic Warming

Journal

JOURNAL OF CLIMATE
Volume 32, Issue 4, Pages 1203-1216

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-18-0234.1

Keywords

Atmosphere; Atmospheric circulation; Extreme events; Climate change; Model output statistics; Anomalies

Funding

  1. National Natural Science Foundation of China [41705052, 41830969, 41775052]
  2. Special Funds for Climate Change [CCSF201830]
  3. National Key RD Program [2018YFC1505904]
  4. Basic Scientific Research and Operation Foundation of CAMS [2018Z006]
  5. Jiangsu Collaborative Innovation Center for Climate Change

Ask authors/readers for more resources

It is argued that anthropogenic global warming may decrease the global occurrence of cold waves. However, a historical record-extreme cold wave, popularly called the boss level cold wave, attacked East Asia in January 2016, which gives rise to the discussion of why this boss-level cold wave occurred during the winter with the warmest recorded global mean surface air temperature (SAT). To explore the impacts of human-induced global warming and natural internal atmosphere variability, we investigated the cold-wave-related circulation regime (i.e., the large-scale atmospheric circulation pattern) and compared the observation with the large ensemble simulations of the MIROC5 model. Our results showed that this East Asian extreme cold-wave-related atmospheric circulation regime mainly exhibited an extremely strong anomaly of the Ural blocking high (UBH) and a record-breaking anomaly of the surface Siberian high (SH), and it largely originated from the natural internal atmosphere variability. However, because of the dynamic effect of Arctic amplification, anthropogenic global warming may increase the likelihood of extreme cold waves through shifting the responsible natural atmospheric circulation regime toward a stronger amplitude. The probability of occurrence of extreme anomalies of UBH, SH, and the East Asia area mean SAT have been increased by 58%, 57%, and 32%, respectively, as a consequence of anthropogenic global warming. Therefore, extreme cold waves in East Asia, such as the one in January 2016, may be an enhanced response to the larger internal atmospheric variability modulated by human-induced global warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available