4.7 Article

The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 14, Issue 11, Pages 5725-5738

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.8b00842

Keywords

-

Funding

  1. Melbourne Bioinformatics [RA0005]
  2. National Computational Infrastructure (NCI) National Facility within the National Computational Merit Allocation Scheme [fk5]
  3. Melbourne Research Scholarship
  4. Australian Research Training Program Scholarship

Ask authors/readers for more resources

The development of van der Waals density functional approximations (vdW-DFAs) has gained considerable interest over the past decade. While in a strictest sense, energy calculations with vdW-DFAs should be carried out fully self-consistently, we demonstrate conclusively for a total of 11 methods that such a strategy only increases the computational time effort without having any significant effect on energetic properties, electron densities, or orbital-energy differences. The strategy to apply a nonlocal vdW-DFA kernel as an additive correction to a fully converged conventional DFA result is therefore justified and more efficient. As part of our study, we utilize the extensive GMTKN55 database for general main-group thermochemistry, kinetics, and noncovalent interactions [Phys. Chem. Chem. Phys. 2017, 19, 32184], which allows us to analyze the very promising B97M-V [J. Chem. Phys. 2015, 142, 074111] and coB97M-V [j. Chem. Phys. 2016, 144, 214110] DFAs. We also present new DFT-D3(BJ) based counterparts of these two methods and of coB97X-V [J. Chem. Theory Comput 2013, 9, 263], which are faster variants with similar accuracy. Our study concludes with updated recommendations for the general method user, based on our current overview of 325 dispersion-corrected and-uncorrected DFA variants analyzed for GMTKN55. vdW-DFAs are the best representatives of the three highest rungs of Jacob's Ladder, namely, B97M-V, co1397M-V, and DSD-PBEP86-NL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available