4.7 Article

Stochastic unfolding of nanoconfined DNA: Experiments, model and Bayesian analysis

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 149, Issue 21, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5051319

Keywords

-

Funding

  1. Danish Council for Independent Research [4002-00428B]
  2. Swedish Research Council [2015-5062, 2017-03865, 2014-4305]

Ask authors/readers for more resources

Nanochannels provide a means for detailed experiments on the effect of confinement on biomacro-molecules, such as DNA. Here we introduce a model for the complete unfolding of DNA from the circular to linear configuration. Two main ingredients are the entropic unfolding force and the friction coefficient for the unfolding process, and we describe the associated dynamics by a non-linear Langevin equation. By analyzing experimental data where DNA molecules are photo-cut and unfolded inside a nanochannel, our model allows us to extract values for the unfolding force as well as the friction coefficient for the first time. In order to extract numerical values for these physical quantities, we employ a recently introduced Bayesian inference framework. We find that the determined unfolding force is in agreement with estimates from a simple Flory-type argument. The estimated friction coefficient is in agreement with theoretical estimates for motion of a cylinder in a channel. We further validate the estimated friction constant by extracting this parameter from DNA's center-of -mass motion before and after unfolding, yielding decent agreement. We provide publically available software for performing the required image and Bayesian analysis. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available