4.7 Article

Chemical signatures of surface microheterogeneity on liquid mixtures

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 150, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5055684

Keywords

-

Funding

  1. JSPS KAKENHI [15H05328, 15K12188]
  2. National Science Foundation, USA [AGS-1744353]

Ask authors/readers for more resources

Many chemical reactions in Nature, the laboratory, and chemical industry occur in solvent mixtures that bring together species of dissimilar solubilities. Solvent mixtures are visually homogeneous, but are not randomly mixed at the molecular scale. In the all-important binary water-hydrotrope mixtures, small-angle neutron and dynamic light scattering experiments reveal the existence of short-lived (<50 ps), short-ranged (similar to 1 nm) concentration fluctuations. The presence of hydrophobic solutes stabilizes and extends such fluctuations into persistent, mesoscopic (10-100 nm) inhomogeneities. While the existence of inhomogeneities is well established, their impacts on reactivity are not fully understood. Here, we search for chemical signatures of inhomogeneities on the surfaces of W:X mixtures (W = water; X = acetonitrile, tetrahydrofuran, or 1,4-dioxane) by studying the reactions of Criegee intermediates (CIs) generated in situ from O-3(g) addition to a hydrophobic olefin (OL) solute. Once formed, CIs isomerize to functionalized carboxylic acids (FC) or add water to produce alpha-hydroxy-hydroperoxides (HH), as detected by surface-specific, online pneumatic ionization mass spectrometry. Since only the formation of HH requires the presence of water, the dependence of the R = HH/FC ratio on water molar fraction x(w) expresses the accessibility of water to CIs on the surfaces of mixtures. The finding that R increases quasi-exponentially with x(w) in all solvent mixtures is consistent with CIs being preferentially produced (from their OL hydrophobic precursor) in X-rich, long-lived OL: XmWn interfacial clusters, rather than randomly dispersed on W:X surfaces. R vs x(w) dependences therefore reflect the average < m, n > composition of OL:XmWn interfacial clusters, as weighted by cluster reorganization dynamics. Water in large, rigid clusters could be less accessible to CIs than in smaller but more flexible clusters of lower water content. Since mesoscale inhomogeneities are intrinsic to most solvent mixtures, these phenomena should be quite general. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available