4.7 Article

Active learning in Gaussian process interpolation of potential energy surfaces

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 149, Issue 17, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5051772

Keywords

-

Funding

  1. EPSRC

Ask authors/readers for more resources

Three active learning schemes are used to generate training data for Gaussian process interpolation of intermolecular potential energy surfaces. These schemes aim to achieve the lowest predictive error using the fewest points and therefore act as an alternative to the status quo methods involving grid-based sampling or space-filling designs like Latin hypercubes (LHC). Results are presented for three molecular systems: CO2-Ne, CO2-H-2, and Ar-3. For each system, two of the active learning schemes proposed notably outperform LHC designs of comparable size, and in two of the systems, produce an error value an order of magnitude lower than the one produced by the LHC method. The procedures can be used to select a subset of points from a large pre-existing data set, to select points to generate data de novo, or to supplement an existing data set to improve accuracy. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available