4.6 Article

miR-203 accelerates apoptosis and inflammation induced by LPS via targeting NFIL3 in cardiomyocytes

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 120, Issue 4, Pages 6605-6613

Publisher

WILEY
DOI: 10.1002/jcb.27955

Keywords

apoptosis; cardiomyocytes; inflammation; LPS; miR-203

Ask authors/readers for more resources

Myocarditis is an inflammatory disease of the myocardium. MicroRNA-203 (miR-203) is involved in various physiological and pathological processes. In this work, we aimed to explore the roles and potential mechanisms of miR-203 in myocarditis in vitro. Cardiomyocyte H9c2 was subjected to 10 mu g/mL lipopolysaccharide (LPS) for 24 hours. Real-time polymerase chain reaction analysis revealed that LPS upregulated miR-203 expression in H9c2 cells. Cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays demonstrated that inhibition of miR-203 reduced cell injury induced by LPS. The cell apoptosis rate, caspase 3 activity, caspase 3/7 activities, and the expression of cleaved-caspase 3 (c-caspase 3) were declined upon miR-203 depletion. In addition, miR-203 silencing attenuated the expression and production of inflammatory cytokines (tumor necrosis factor-alpha, interleukin [IL]-6, and IL-8). On the contrary, overexpression of miR-203 showed the opposite trend in cell apoptosis and inflammation. Luciferase reporter assay confirmed that miR-203 could bind with the nuclear factor interleukin-3 (NFIL3) 3 '-untranslated regions (3 '-UTR), and miR-203 regulated the expression of NFIL3 negatively. Moreover, NFIL3 silencing partly abolished the myocardial protective functions of miR-203 inhibitor. Herein, we suggest that miR-203 promoted cell apoptosis and inflammation induced by LPS via targeting NFIL3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available