4.5 Article

Leg stiffness in unilateral transfemoral amputees across a range of running speeds

Journal

JOURNAL OF BIOMECHANICS
Volume 84, Issue -, Pages 67-72

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2018.12.014

Keywords

Running-specific prosthesis; Spring-mass model; Bouncing gait; Amputee locomotion

Funding

  1. JSPS KAKENHI [26702027]
  2. Grants-in-Aid for Scientific Research [26702027] Funding Source: KAKEN

Ask authors/readers for more resources

Carbon fiber running-specific prostheses have allowed lower extremity amputees to participate in running activity by providing spring-like properties in their affected limb. It has been established that as running speed increases, stiffness of the leg spring (leg stiffness; kieg) remains constant in non-amputees. Although a better understanding of keg regulation may be helpful for the development of spring-based prostheses, little is known about stiffness regulation in unilateral transfemoral amputees. The aim of this study was to investigate stiffness regulation at different running speeds in unilateral transfemoral amputees wearing a running-specific prosthesis. Nine unilateral transfemoral amputees performed running on an instrumented treadmill across a range of speeds (30, 40, 50, 60, and 70% of their maximum running speed). Using a spring-mass model, keg was calculated as the ratio of maximal vertical ground reaction force to maximum leg compression during the stance phase in both affected and unaffected limbs. We found a decrease in kieg from the slower speed to 70% speed for the affected limb, whereas no change was present in the unaffected limb. Specifically, there was a significant differences in the keg between 30% and 70%, 40% and 70%, and 50% and 70%, and the magnitude of the kieg difference between affected and unaffected limbs varied with variations in running speeds in unilateral TFAs with an RSP. These results suggest the kieg regulation strategy of unilateral transfemoral amputees is not the same in the affected and unaffected limbs across a range of running speeds. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available