4.6 Article

Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 293, Issue 50, Pages 19492-19500

Publisher

ELSEVIER
DOI: 10.1074/jbc.RA118.003876

Keywords

structural biology; ion channel; organic anion channel; membrane protein; electrophysiology; protein structure; acetate uptake; SatP; hexamer; membrane channel; monocarboxylate transport

Funding

  1. National Key R&D Program of China [2016YFA0502700]
  2. Scientific Department of Sichuan Province [2017JQ0007]

Ask authors/readers for more resources

Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate-acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available