4.6 Article

Hsp70 (HSP70A1A) downregulation enhances the metastatic ability of cancer cells

Journal

INTERNATIONAL JOURNAL OF ONCOLOGY
Volume 54, Issue 3, Pages 821-832

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijo.2018.4666

Keywords

heat shock protein 70; HSP70A1A; epithelial-to-mesenchymal transition; migration; metastasis; cancer

Categories

Funding

  1. European Union
  2. Hellenic Ministry of Education
  3. Empeirikio Institution, Athens, Greece

Ask authors/readers for more resources

Heat shock protein 70 (Hsp70; also known as HSP70A1A) is one of the most induced proteins in cancer cells; however, its role in cancer has not yet been fully elucidated. In the present study, we proposed a hypothetical model in which the silencing of Hsp70 enhanced the metastatic properties of the HeLa, A549 and MCF7 cancer cell lines. We consider that the inability of cells to form cadherin-catenin complexes in the absence of Hsp70 stimulates their detachment from neighboring cells, which is the first step of anoikis and metastasis. Under these conditions, an epithelial-to-mesenchymal transition (EMT) pathway is activated that causes cancer cells to acquire a mesenchymal phenotype, which is known to possess a higher ability for migration. Therefore, we herein provide evidence of the dual role of Hsp70 which, according to international literature, first establishes a cancerous environment and then, as suggested by our team, regulates the steps of the metastatic process, including EMT and migration. Finally, the trigger for the anti-metastatic properties that are acquired by cancer cells in the absence of Hsp70 appears to be the destruction of the Hsp70-dependent heterocomplexes of E-cadherin/catenins, which function like an anchor between neighboring cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available