4.6 Article

Ginsenoside Rg1 protects against H2O2-induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 43, Issue 2, Pages 717-726

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2018.4005

Keywords

reactive oxygen species oxidative stress; NADPH oxidase 2; nucleotide-binding oligomerisation domain-like receptor protein 1 inflammasome; hippocampal neurons; ginsenoside Rg1

Funding

  1. National Natural Science Foundation of China [81671384, 81371329]
  2. Natural Science Foundation of Anhui Province Education Department [KJ2016A357]

Ask authors/readers for more resources

Oxidative stress and neuroinflammation are important in the pathogenesis of ageing and age-related neurodegenerative diseases, including Alzheimer's disease. NADPH oxidase 2 (NOX2) is a major source of reactive oxygen species (ROS) in the brain. The nucleotide-binding oligomerisation domain (NOD)-like receptor protein 1 (NLRP1) inflammasome is responsible for the formation of pro-inflammatory molecules in neurons. Whether the NOX2-NLRP1 inflammasome signalling pathway is involved in neuronal ageing and age-related damage remains to be elucidated. Ginsenoside Rg1 (Rg1) is a steroidal saponin found in ginseng. In the present study, the primary hippocampal neurons were treated with H2O2 (200 mu M) and Rg1 (1, 5 and 10 mu M) for 24 h to investigate the protective effects and mechanisms of Rg1 on H2O2-induced hippocampal neuron damage, which mimics age-related damage. The results showed that H2O2 treatment significantly increased ROS production and upregulated the expression of NOX2 and the NLRP1 inflammasome, and led to neuronal senescence and damage to hippocampal neurons. Rg1 decreased ROS production, reducing the expression of NOX2 and the NLRP1 inflammasome in H2O2-treated hippocampal neurons. Furthermore, Rg1 and tempol treatment significantly decreased neuronal apoptosis and the expression of -galactosidase, and alleviated the neuronal senescence and damage induced by H2O2. The present study indicates that Rg1 may reduce NOX2-mediated ROS generation, inhibit NLRP1 inflammasome activation, and inhibit neuronal senescence and damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available