4.6 Article

Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 43, Issue 3, Pages 1139-1148

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2019.4050

Keywords

Lactobacillus rhamnosus GG; cecal ligation and puncture; sepsis; 16SrRNA; microbiota

Funding

  1. Natural Science Foundation of China [81771498]
  2. Diagnosis and treatment of gastrointestinal dysfunction in elderly patients with integrated traditional Chinese and Western Medicine [2017-XK-A31]

Ask authors/readers for more resources

Decrease of 'health-benefiting' microbes and increase of pathogenic bacteria (a condition termed dysbiosis) in intensive care unit patients is considered to induce or aggravate sepsis (gut-origin sepsis). Orally administered probiotics have been effective in the prevention of nosocomial infections. However, the mechanisms of probiotic-induced anti-infection and anti-sepsis remain to be explored. In the present study, 4-week-old C57BL6 mice were orally administrated with Lactobacillus rhamnosus GG (LGG) or normal saline (control) 4 weeks prior to cecal ligation and puncture (CLP). A subset of the mice were sacrificed at 24 h post-CLP, and the others were used for survival studies. Ileum tissues, blood and fecal samples were collected. The survival rate of septic mice pretreated with LGG was significantly improved compared with untreated mice. The levels of inflammatory cytokines were reduced in LGG-pretreated septic mice. A decrease of colonic proliferation and epithelial tight junctions and an increase of colonic apoptosis were observed in control septic CLP+saline mice. LGG pretreatment reversed the colonic proliferation, apoptosis and expression of tight junction proteins to the levels of the sham group. LGG pretreatment improved the richness and diversity of intestinal microbiota in septic mice. The principal coordinates analysis clustering plots revealed a significant separate clustering in microbiota structure between three groups. Bacteria associated with energy consumption, including Bacteroidetes, with opportunistic infection, including Proteobacteria, Staphylococcaceae and Enterococcaceae, lipopolysaccharide producers, including Enterobacteriaceae, and facultative anaerobes, such as Bacteroidaceae and Erysipelotrichaceae, increased in septic mice. By contrast, bacteria associated with energy harvest, including Firmicutes, intestinal barrier function regulators, including Akkermansia, hepatic function regulators, including Coprococcus and Oscillospira, and obligate anaerobes, including Prevotellaceae, decreased in septic mice. With LGG pretreatment, the sepsis-induced microbiota dysbiosis was reversed. The present results elucidated the potential mechanism of LGG treatment in sepsis, by improving intestinal permeability and modulating microbiota dysbiosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available