4.5 Article

Strong Tracking Tobit Kalman Filter with Model Uncertainties

Journal

Publisher

INST CONTROL ROBOTICS & SYSTEMS, KOREAN INST ELECTRICAL ENGINEERS
DOI: 10.1007/s12555-017-0655-4

Keywords

Censored measurement; fading factor; Kalman filter; model mismatch; orthogonal principle; strong tracking filter; Tobit model

Ask authors/readers for more resources

The Tobit Kalman filter (TKF) is a good choice for applications of discrete time-varying systems with censored measurements. The traditional TKF is usually designed under the assumption of exactly knowing system state and measurement functions, which can not guarantee the good performance and is even unsuitable for system with model mismatch. To ensure the performance, this paper proposes a novel TKF algorithm in the presence of both censored measurements and model uncertainties. Our proposed algorithm, called strong tracking TKF (STTKF), adopts the orthogonal principle as an additional criterion to overcome model mismatch problem. By introducing fading factor into a priori error covariance, STTKF adaptively adjust gain matrix according to different model mismatch degree. Firstly the recursive fading factor formulation is deduced based on orthogonal principle. Then the designed STTKF process is given in a recursive manner. Finally the effectiveness of STTKF is verified by two examples of oscillator system and unmanned aerial vehicle (UAV) transmitter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available