4.7 Article

Up- and downregulation of mature miR-1587 function by modulating its G-quadruplex structure and using small molecules

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 121, Issue -, Pages 127-134

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2018.10.017

Keywords

G-quadruplex miR-1587; Function regulation; Pseudopalmatine; TMPyP4

Funding

  1. National Natural Science Foundation of China [21572016, 81625001, 91339105]
  2. 973 Program [2012CB720600, 2012CB720601]

Ask authors/readers for more resources

Using bioinformatics analysis, we found some mature human miRNAs containing G-rich sequences with four G-tracts that had a high probability of forming G-quadruplex structures. Here, we chose G-rich miR-1587 as a model to characterize the function and regulation of miRNAs. Using electrospray ionization mass spectrometry, magnetic resonance imaging, circular dichroism spectrometry, we had confirmed that miR-1587 folded into a stable parallel G-quadruplex structure. By microarray, Q-RT-PCR and 3'UTR luciferase assay, TAGLN, an early marker of smooth muscle differentiation and tumor suppressor, was identified as a target gene of miR-1587, thus providing a direct target to study miR-1587 functions. We identified three aspects of miR-1587 regulation: 1) KO induced miR-1587 G-quadruplex formation, reducing the interaction between miR-1587 and the target gene, and inhibiting miR-1587 function; 2) pseudopalmatine ligand further inhibited miR-1587 binding to TAGLN mRNA, which disrupted its function and increased the TAGLN expression; 3) the addition of TMPyP4 ligand interfered G-quadruplex formation, and significantly enhanced miR-1587 regulation of TAGLN expression. This study has revealed the possibility of using the G-quadruplex structure as a strategy to regulate miR-1587 function, showing potential for the development of up- and downregulation of mature G-rich microRNA function by modulating its G-quadruplex and using small molecules. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available