4.7 Article

Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 121, Issue -, Pages 601-608

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2018.10.044

Keywords

Astaxanthin; Haematococcus pluvialis; Encapsulation; Alginate beads; Surface response methodology; Release model

Funding

  1. Universidad Nacional del Litoral (Santa Fe, Argentina)
  2. Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)
  3. Agencia Nacional de Promocion Cientifica y Tecnologica (Argentina)
  4. Agenda Santafesina de Ciencia, Tecnologia e Innovacion (Santa Fe, Argentina)

Ask authors/readers for more resources

Nowadays, consumers are more conscious about healthier products consumption benefits. Astaxanthin obtained from the microalgae Haematococcus pluvialis represents a natural ingredient for the nutraceutical and functional food industries. It is claimed that astaxanthin has much stronger antioxidant activity than vitamin E and beta-carotene, providing different health benefits. However, the unstable structure of the molecule limits its application in functional foods development. Therefore, the present study evaluates the effect of five independent formulation and process variables for natural astaxanthin oleoresin encapsulation using an external ionic gelation technique. Response surface methodology can be used for studying the effect of several factors at different levels and their influences on each other, which overcomes the shortcoming of the traditional orthogonal method. The results showed that alginate and CaCl2 concentrations have a significant effect on particles size obtained, while alginate/oleoresin ratio and surfactant concentration greatly influence the astaxanthin oleoresin release rate. In vitro studies under simulated intestinal conditions showed that astaxanthin oleoresin release process can be described by Hopfenberg model. Three mathematical models were obtained for predicting particle size, astaxanthin release rate and encapsulation yield under different process conditions, providing a platform for microencapsulation technology optimization for healthy food design. (C) 2018 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available