4.7 Article

Facile Mechanosynthesis of the Archetypal Zn-Based Metal-Organic Frameworks

Journal

INORGANIC CHEMISTRY
Volume 57, Issue 21, Pages 13437-13442

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b02026

Keywords

-

Funding

  1. National Science Centre [2011/01/N/ST5/05547]
  2. Ministry of Science and Higher Education within the Iuventus Plus Programme [IP2015 064274]
  3. Foundation for Polish Science Team Program - European Union under the European Regional Development Fund [TEAM/2016-2/14]

Ask authors/readers for more resources

Mechanochemical methods have been successful in providing rapid access to a number of inorganic-organic functional materials under mild conditions. Recently, we demonstrated a novel mechanochemical strategy for metal-organic framework (MOF) preparation based on predesigned oxo-centered secondary building units. Herein, we develop this method for the facile preparation of the isoreticular MOF (IRMOF) family members based on a combination of an oxozinc amidate cluster, [Zn-4(mu(4)-O)(NHOCPh)(6)], and selected ditopic aminoterephthalate and 4,4'-biphenyldicarboxylate as well as tritopic 1,3,5-benzenetribenzoate ligands. The resulting IRMOF-3, IRMOF-10, and MOF-177 crystalline materials were characterized using powder X-ray diffraction, IR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis. We found that the character of the organic linker strongly affects the nature of the resulting MOF crystallites after activation processes. The SEM images demonstrate that IRMOF-3 formed microcrystallites in the range of 400-500 nm, while the two other materials exhibited microstructures of amorphous phases. The porosity of each sample was estimated by N-2 sorption measurements at 77 K. These results provide an efficient and general method for the mechanosynthesis of Zn-based MOF materials using a predesigned oxozinc cluster.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available