4.2 Article

The analysis of the self-lubricating behavior and local failure mechanism of silver-rich solid film

Journal

INDUSTRIAL LUBRICATION AND TRIBOLOGY
Volume 70, Issue 8, Pages 1560-1568

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/ILT-12-2017-0381

Keywords

Composites; Sliding wear; Surface analysis; Electron microscopy; Additive; Anti-wear and friction-reducing; Aerostatic lubrication; Anti-wear additives; Silver-rich film

Funding

  1. Foundation of Henan Educational Committee [16A460001]
  2. Science research project in Inner Mongolia Autonomous Region [NJZZ16369]
  3. Sichuan University of Science Engineering [2016RCL04]

Ask authors/readers for more resources

Purpose The main aim of this paper was to study the self-lubricating behavior and failure mechanism of silver-rich solid film for in-depth analyzing of the friction and wear property of TiAl-10 wt. per cent Ag self-lubricating composite. Design/methodology/approach The friction and wear property of TiAl-10 wt. per cent Ag self-lubricating composite sliding against Si3N4 ball was tested under the testing conditions of ball-on-disk wear system. Field emission scanning electron microscopy and electron probe microanalyzer were used to analyze the surface morphology of silver-rich solid film. The main element contents were tested by energy dispersive spectroscopy. Silver phase on wear scar could be well identified using X-ray photo-electron spectroscopy. The theory calculation of shearing stress on wear scar was executed to discuss the local failure mechanism of silver-rich solid film. The lubricating role of silver was also discussed to analyze the anti-friction and anti-wear behavior of silver-rich solid film. Findings The friction coefficients and wear rates of TASC gradually reduced at 0-65 min, and approached to small values (0.31 in friction coefficient and 3.10x104 mm3N-1m-1 in wear rate) at 65-75 min. The excellent friction and wear behavior of TASC was mainly attributed to the lubricating property of silver-rich film at 65-75 min. At 1220 N, surface shearing stress increased up to 146.31 MPa, and exceeded more than the shearing strength (125 MPa) of silver-rich film, which caused the propagating of fatigue crack and the destroying of silver-rich film, leading to high friction and severe wear. Originality/value It is important that the self-lubricating behavior and local failure of solid film is explored for further understanding the friction and wear property of TiAl alloys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available