4.6 Article

Performance of Asymmetric Particulate Filter with Soot and Ash Deposits: Analytical Solution and Its Application

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 57, Issue 46, Pages 15846-15856

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.8b02848

Keywords

-

Funding

  1. MIT consortium
  2. Caterpillar
  3. Chevron Oronite
  4. Ciba Specialty Chemicals
  5. Cummins
  6. Detroit Diesel
  7. Ford
  8. Infineum
  9. Komatsu
  10. Lutek
  11. NGK Ceramics
  12. Sud-Chemie
  13. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Laboratory
  14. Oak Ridge National Laboratory
  15. National Renewable Energy Laboratory
  16. Valvoline

Ask authors/readers for more resources

With ever-tightening emission regulations, particulate filters are critical for internal combustion engines to meet the stringent particulate matter emission standards. A fast way to predict the filter performance, instead of numerically solving the governing differential equations, is needed for filter design and selection, real-time control, malfunction detection, and deposit load sensing. Approximate analytical solutions for wall flow filters, considering asymmetric channels and arbitrary deposit amounts, are derived by a technique of successive approximation. The analytical predictions of filter pressure drop have been validated against both steady state and transient experimental measurements. Moreover, over a broad range of filter operating conditions, the accuracy of the second-order analytical solution is validated by comparisons with the numerical predictions. The derivation also provides analytical expressions for channel and wall velocity profiles along the filter length. This study reveals the necessity of considering the nonlinear term of the governing equations when the actual open widths of inlet and outlet channels are quite different.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available