4.4 Article

A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore's Protonation State

Journal

BIOCHEMISTRY
Volume 54, Issue 38, Pages 5839-5848

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.5b00735

Keywords

-

Funding

  1. DFG [Hu702/8, SFB1078]
  2. NWO [DN 89-190, ALW 822.02.007]
  3. Max-Planck-Society

Ask authors/readers for more resources

The second GAF domain of AnPixJ, AnPixJg2, a bilin-binding protein from the cyanobacterium Anabaena PCC 7120, undergoes a photoinduced interconversion between a red-absorbing state, Pr, and a green-absorbing state, Pg. Combining ultraviolet-vis (UV-vis), infrared, resonance Raman (RR), and magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, we have studied this cyanobacteriochrome (CBCR) assembled with phycocyanobilin (PCB) either in vivo or in vitro. In both assembly routes, the spectroscopic data of the Pr state reveal nearly identical chromophore structures with a protonated (cationic) bilin. However, unlike the native (in vivo assembly) Pg photoproduct, in which the bilin retains protonation, the Pg generated from the in vitro-assembled AnPixJg2 harbors a deprotonated (neutral) bilin chromophore at pH 7.8. IR difference spectroscopy further reveals the transfer of a proton from the bilin to a side-chain carboxylate on an amino acid, probably Asp291. Besides the change in protonation state, the bilin structure is very similar in the in vitro- and in vivo-assembled Pg photoproducts. The chromophore of the in vitro Pg becomes protonated when the pH is increased to 10, presumably because of a partial reversal of protein misfolding. Most remarkably, the electronic transitions remain unchanged and are very similar to those of the native Pg. Thus, bilin protonation is not a key parameter for controlling the energies of the electronic transitions in AnPixJg2. Possible alternative molecular mechanisms for color tuning are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available