4.8 Article

Hepatic Autophagy Deficiency Compromises Farnesoid X Receptor Functionality and Causes Cholestatic Injury

Journal

HEPATOLOGY
Volume 69, Issue 5, Pages 2196-2213

Publisher

WILEY
DOI: 10.1002/hep.30407

Keywords

-

Funding

  1. NCATS NIH HHS [UL1 TR001866] Funding Source: Medline
  2. NIAAA NIH HHS [R21 AA021450, P50 AA011999, R01 AA021751] Funding Source: Medline
  3. NIDDK NIH HHS [R01 DK116605, R01 DK056621, R01 DK117965] Funding Source: Medline

Ask authors/readers for more resources

Autophagy is important for hepatic homeostasis, nutrient regeneration, and organelle quality control. We investigated the mechanisms by which liver injury occurred in the absence of autophagy function. We found that mice deficient in autophagy because of the lack of autophagy-related gene 7 or autophagy-related gene 5, key autophagy-related genes, manifested intracellular cholestasis with increased levels of serum bile acids, a higher ratio of tauromuricholic acid/taurocholic acid in the bile, increased hepatic bile acid load, abnormal bile canaliculi, and altered expression of hepatic transporters. In determining the underlying mechanism, we found that autophagy sustained and promoted the basal and up-regulated expression of farnesoid X receptor (Fxr) in the fed and starved conditions, respectively. Consequently, expression of Fxr and its downstream genes, particularly bile salt export pump, and the binding of FXR to the promoter regions of these genes, were suppressed in autophagy-deficient livers. In addition, codeletion of nuclear factor erythroid 2-related factor 2 (Nrf2) in autophagy deficiency status reversed the FXR suppression. Furthermore, the cholestatic injury of autophagy-deficient livers was reversed by enhancement of FXR activity or expression, or by Nrf2 deletion. Conclusion: Together with earlier reports that FXR can suppress autophagy, our findings indicate that autophagy and FXR form a regulatory loop and deficiency of autophagy causes abnormal FXR functionality, leading to the development of intracellular cholestasis and liver injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available