4.4 Article

Analysis of Maisotsenko humid air bottoming cycle employing mixed flow air saturator

Journal

HEAT AND MASS TRANSFER
Volume 55, Issue 5, Pages 1477-1489

Publisher

SPRINGER
DOI: 10.1007/s00231-018-2531-z

Keywords

Bottoming cycle; Mixed flow HMX; Carbon footprint; Maisotsenko cycle

Ask authors/readers for more resources

Maisotsenko Humid Air Bottoming Cycle (MHABC) is a viable option for the waste heat recovery of gas turbine topping cycle to attain a higher efficiency point of the combined cycle power plant; thus, having a potential of lower CO2 emissions towards environment. In this work, instead of the typically proposed counter flow configuration of the air saturator, a novel mixed flow configuration is proposed. The proposed configuration uses a hybrid cross-flow and a regenerative counter-flow heat and mass exchanger (HMX). This hybrid HMX is numerically simulated to estimate optimal amount of saturated air which can lead to maximum efficiency and power output. The mathematical model of the mixed flow configuration HMX based air saturator is developed by applying mass and energy balance laws on a selected control volume. The results of the air saturator are initially validated using previously published experimental data for air cooling applications. Furthermore, simulations for high-pressure operations suitable for power generation are performed and a parametric analysis shows that optimal mass flow rate ratio between the working air in the dry channel and incoming air for cross-flow part is 0.65. Optimal mass flow ratio between the working air wet channel and working air dry channel for the counter-flow part is 0.5. The integration of hybrid air saturator in MHABC can yield a maximum of similar to 57MW of output work and similar to 42% of thermal efficiency. The proposed system can achieve a 7% increment in total output work, and 9% increment in thermal efficiency as compared to the counter-flow configuration as an air saturator in the bottoming cycle. Furthermore, the proposed system has similar to 55% fewer carbon footprint as compared to counter-flow configuration alone as an air saturator.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available