4.7 Article

Bathymetry retrieval from optical images with spatially distributed support vector machines

Journal

GISCIENCE & REMOTE SENSING
Volume 56, Issue 3, Pages 323-337

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/15481603.2018.1538620

Keywords

bathymetry; optical images; support vector machine; spatially distributed model

Funding

  1. National Natural Science Foundation of China [41671095]
  2. College of Humanities & Social Sciences summer stipend program of Louisiana State University

Ask authors/readers for more resources

This paper presents a spatially distributed support vector machine (SVM) system for estimating shallow water bathymetry from optical satellite images. Unlike the traditional global models that make predictions from a unified global model for the entire study area, our system uses locally trained SVMs and spatially weighted votes to make predictions. By using IKONOS-2 multi-spectral image and airborne bathymetric LiDAR water depth samples, we developed a spatially distributed SVM system for bathymetry estimates. The distributed model outperformed the global SVM model in predicting bathymetry from optical satellite images, and it worked well at the scenarios with a low number of training data samples. The experiments showed the localized model reduced the bathymetry estimation error by 60% from RMSE of 1.23 m to 0.48 m. Different from the traditional global model that underestimates water depth near shore and overestimates water depth offshore, the spatially distributed SVM system did not produce regional prediction bias and its prediction residual exhibited a random pattern. Our model worked well even if the sample density was much lower: The model trained with 10% of the samples was still able to obtain similar prediction accuracy as the global SVM model with the full training set.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available