4.7 Article

Cell-type-specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes

Journal

GENOME RESEARCH
Volume 28, Issue 11, Pages 1621-1635

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.233304.117

Keywords

-

Funding

  1. Intramural Research Program (IRP) of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health (NIH)
  2. Cancer Research UK (CRUK) [C588/A19167]
  3. NIH [CA083115]
  4. Australian Research Council Fellowship
  5. Cancer Research UK Programme Awards [C588/A4994, C588/A10589]
  6. Cancer Research UK [C8216/A6129]
  7. US National Institutes of Health [R01 ROI CA83115]
  8. European Commission under the 6th Framework Programme [LSHC-CT-2006-018702]
  9. MRC [MR/L01629X/1] Funding Source: UKRI
  10. NATIONAL CANCER INSTITUTE [R01CA083115, R01CA133996, P50CA093459, P50CA097007] Funding Source: NIH RePORTER
  11. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [ZIBHG000196] Funding Source: NIH RePORTER
  12. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [R01ES011740] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Most expression quantitative trait locus (eQTL) studies to date have been performed in heterogeneous tissues as opposed to specific cell types. To better understand the cell-type-specific regulatory landscape of human melanocytes, which give rise to melanoma but account for <5% of typical human skin biopsies, we performed an eQTL analysis in primary melanocyte cultures from 106 newborn males. We identified 597,335 cis-eQTL SNPs prior to linkage disequilibrium (LD) pruning and 4997 eGenes (FDR < 0.05). Melanocyte eQTLs differed considerably from those identified in the 44 GTEx tissue types, including skin. Over a third of melanocyte eGenes, including key genes in melanin synthesis pathways, were unique to melanocytes compared to those of GTEx skin tissues or TCGA melanomas. The melanocyte data set also identified trans-eQTLs, including those connecting a pigmentation-associated functional SNP with four genes, likely through cis-regulation of IRF4. Melanocyte eQTLs are enriched in cis-regulatory signatures found in melanocytes as well as in melanoma-associated variants identified through genome-wide association studies. Melanocyte eQTLs also colocalized with melanoma GWAS variants in five known loci. Finally, a transcriptome-wide association study using melanocyte eQTLs uncovered four novel susceptibility loci, where imputed expression levels of five genes (ZFP90, HEBP1, MSC, CBWD1, and RP11-383H13.1) were associated with melanoma at genome-wide significant P-values. Our data highlight the utility of lineage-specific eQTL resources for annotating GWAS findings, and present a robust database for genomic research of melanoma risk and melanocyte biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available