4.7 Article

Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: A meta-analysis with Salicaceae

Journal

FUNCTIONAL ECOLOGY
Volume 33, Issue 3, Pages 422-435

Publisher

WILEY
DOI: 10.1111/1365-2435.13249

Keywords

defence; genotype by environment interaction; growth; intraspecific trait variation; meta-analysis; plant-insect interactions; Populus; Salix

Categories

Funding

  1. National Science Foundation [DGE-1256259]
  2. National Institute of Food and Agriculture [20167013-25088]

Ask authors/readers for more resources

Ecological research has increasingly highlighted the importance of intraspecific variation in shaping the structure and function of communities and ecosystems. Indeed, the effects of intraspecific variation can match or exceed those of interspecific variation. Previous reviews of intraspecific variation in plant traits across heterogeneous environments have focused primarily on mean phenotypic effects. We propose that a richer and fuller understanding of the ecological causes and consequences of intraspecific variation would be provided by partitioning trait variance into its subcomponents (genetic, environment, genotype by environment interaction). We used a meta-analysis of 352 sets of genetic, environment and genotype by environment (GxE) variation estimates from 72 studies of Salicaceae to compare these sources of variation across plant traits (growth, foliar nitrogen, defence compounds), insect herbivore performance metrics (e.g., survival, growth, fecundity) and environmental conditions (e.g., soil nutrients, water, defoliation). Our findings revealed that variation in levels of defence compounds (both condensed tannins and salicinoids) and insect herbivore performance were primarily genetically determined, while variation in plant growth and foliar nitrogen was more environmentally determined. Plasticity in plant growth, foliar nitrogen levels and insect herbivore performance varied substantially across different sites (year x location), and nutrient, water and carbon dioxide environments. Plasticity was lowest for chemical defence traits and all traits in contrasting ozone and defoliation environments. Our quantitative review also revealed several gaps in the literature, including a need for surveying more mature plants, a wider variety of insect herbivore species (e.g., leaf-galling insects, specialist insects) and underrepresented environmental treatments (e.g., competition, defoliation, disease, light and water availability). Findings from this analysis highlight the importance of, and patterns within, intraspecific variation with respect to shaping the evolvability and plasticity of traits and governing the interactions of plants and insects. A is available for this article.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available