4.7 Article

Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates

Journal

FOOD RESEARCH INTERNATIONAL
Volume 121, Issue -, Pages 524-532

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.foodres.2018.12.008

Keywords

BSG; Peptides; Bioactivity; Protein; Antioxidant; DPP-IV; IL-6; Alkaline extraction

Funding

  1. National Development Plan 2007-2013, through the Food Institutional Research Measure (FIRM)
  2. Department of Agriculture, Food and Marine, Ireland [15/F/647, 11/F/064]

Ask authors/readers for more resources

Brewer's spent grain (BSG) is a co-product of the brewing industry that has been shown to contain a range of bioactive peptides encrypted within its protein sequences. Two methods were evaluated herein to generate bioactive peptides; (i) an alkaline extracted BSG protein rich fraction (BSG-PI) was hydrolysed using different combinations of proteolytic enzymes and (ii) BSG was pre-treated with carbohydrates followed by direct hydrolysis using proteolytic enzymes (BSG-DH). BSG-DH with Alcalase/Flavourzyme resulted in significantly higher (p < .05) protein yield when compared to BSG-PI (63.09 +/- 0.27 and 58.90 +/- 1.45%, respectively). The antioxidant activities (ORAC, FRAP and ABTS) of the BSG-PI and -DH hydrolysates differed depending on the assay and proteolytic enzyme combination preparations used for hydrolysis. Inhibition of DPP-IV by the BSG-PI hydrolysates ranged from 87.01 +/- 0.15 to 89.61 +/- 0.12% while inhibition by the BSG-DH hydrolysates ranged from 35.71 +/- 0.72 to 85.06 +/- 0.17%. A significant reduction in the release of interleukin-6 in lipopolysaccharide-stimulated RAW 264.7 cells was observed following treatment with BSG-PI hydrolysates generated with Prolyve/Protease P (58.30 +/- 13.76%) and Corolase PP/Flavourzyme (48.02 +/- 10.82%) when compared to untreated LPS stimulated control cells (100%). BSG-DH hydrolysates were subjected to in vitro simulated gastrointestinal digestion (SGID) which resulted in a reduction in antioxidant activity, an increase in DPP-IV inhibition and no change in the immunomodulatory activity. Ultrafiltration of selected BSG-DH hydrolysates (through 30 and 10 kDa membranes) gave some permeates with enhanced bioactivities. The results demonstrate that direct enzymatic hydrolysis of BSG is a feasible approach for the generation of bioactive peptides without the prior use of an alkali protein extraction step.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available