4.5 Article

The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells

Journal

EXPERIMENTAL AND MOLECULAR PATHOLOGY
Volume 107, Issue -, Pages 10-22

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.yexmp.2019.01.006

Keywords

Artesunate; Cell cycle arrest; Cytotoxicity, Breast cancer, Reactive oxygen species

Categories

Funding

  1. Breast Cancer Society of Canada
  2. Canadian Breast Cancer Foundation
  3. Queen Elizabeth II Foundation
  4. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Breast cancer is the most prevalent cancer diagnosis in women, with triple-negative and human epidermal growth factor 2 (HER2)-enriched advanced breast cancers having the poorest prognoses. The morbidity and mortality associated with advanced disease, as well as the emergence of multi-drug resistant variants, highlights the urgency to develop novel therapeutic agents. Artesunate (ART) is a semi-synthetic derivative of artemisinin from the Chinese herb sweet wormwood. ART is widely used in the treatment of malaria and is well tolerated by patients. Importantly, ART also has anti-cancer activities and may therefore represent a less toxic alternative to conventional chemotherapy. In this study, we demonstrate a dose- and time-dependent inhibitory effect of ART on the growth of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells, which was the result of both anti-proliferative and cytotoxic activities. ART inhibited breast cancer cell proliferation via a reactive oxygen species (ROS)-dependent G2/M arrest and ROS-independent G1 arrest. ART-treated MDA-MB-468 and SK-BR-3 cells also experienced apoptotic cell death, which was both ROS- and iron-dependent. ART induced oxidative stress caused the loss of mitochondrial outer membrane integrity and damage to the cellular DNA of MDA-MB-468 and SK-BR-3 cells. In addition, exposure to low-dose ART sensitized MDA-MB-468 and SK-BR-3 cells to chemotherapeutic drugs. On the basis of our findings, we suggest that ART may have clinical utility in the treatment of triple-negative and HER2-enriched breast cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available