4.3 Article

Elucidation of the Intestinal Absorption Mechanism of Loganin in the Human Intestinal Caco-2 Cell Model

Journal

Publisher

HINDAWI LTD
DOI: 10.1155/2018/8340563

Keywords

-

Funding

  1. Science and Technology Commission of Shanghai Municipality [18ZR1424900, 16401900500, 154119639900]
  2. Cross-Fund of Biomedical Engineering of Shanghai Jiaotong University [YG2016MS77]
  3. Shanghai Health and Family Planning Commission [201840121]

Ask authors/readers for more resources

Loganin, iridoid glycosides, is the main bioactive ingredients in the plant Strychnos nux-vomica L. and demonstrates various pharmacological effects, though poor oral bioavailability in rats. In this study, the intestinal absorption mechanism of loganin was investigated using the human intestinal Caco-2 cell monolayer model in both the apical-to-basolateral (A-B) and the basolateral-to-apical (B-A) direction; additionally, transport characteristics were systematically investigated at different concentrations, pHs, temperatures, and potential transporters. The absorption permeability (PappAB) of loganin, which ranged from 12.17 to 14.78 x 10(-6)cm/s, was high at four tested concentrations (5, 20, 40, and 80M), while the major permeation mechanism of loganin was found to be passive diffusion with active efflux mediated by multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP). In addition, it was found that loganin was not the substrate of efflux transporter P-glycoprotein (P-gp) since the selective inhibitor (verapamil) of the efflux transporter exhibited little effects on the transport of loganin in the human intestinal Caco-2 cells. Meanwhile, transport from the apical to the basolateral side increased 2.09-fold after addition of a MRP inhibitor and 2.32-fold after addition of a BCRP inhibitor. In summary, our results clearly demonstrate, for the first time, a good permeability of loganin in the human intestinal Caco-2 cell model and elucidate, in detail, the intestinal absorption mechanism and the effects of transporters on iridoid glycosides compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available