4.5 Article

Characterization of regulatory T cells in obese omental adipose tissue in humans

Journal

EUROPEAN JOURNAL OF IMMUNOLOGY
Volume 49, Issue 2, Pages 336-347

Publisher

WILEY
DOI: 10.1002/eji.201847570

Keywords

Adipose tissue; IL-33; Immune regulation; Metabolism; Regulatory T cells (Tregs); Type 2 diabetes (T2D)

Categories

Funding

  1. Canadian Diabetes Association [OG-3-14-4460-ML]
  2. Canadian Institutes of Health Research Doctoral Award
  3. BC Children's Hospital Research Institute
  4. JDRF
  5. JDRF Canadian Clinical Trials Network

Ask authors/readers for more resources

Obesity-associated visceral adipose tissue (AT) inflammation promotes insulin resistance and type 2 diabetes (T2D). In mice, lean visceral AT is populated with anti-inflammatory cells, notably regulatory T cells (Tregs) expressing the IL-33 receptor ST2. Conversely, obese AT contains fewer Tregs and more proinflammatory cells. In humans, however, there is limited evidence for a similar pattern of obesity-associated immunomodulation. We used flow cytometry and mRNA quantification to characterize human omental AT in 29 obese subjects, 18 of whom had T2D. Patients with T2D had increased proportions of inflammatory cells, including M1 macrophages, with positive correlations to body mass index. In contrast, Treg frequencies negatively correlated to body mass index but were comparable between T2D and non-T2D individuals. Compared to human thymic Tregs, omental AT Tregs expressed similar levels of FOXP3, CD25, IKZF2, and CTLA4, but higher levels of PPARG, CCR4, PRDM1, and CXCL2. ST2, however, was not detectable on omental AT Tregs from lean or obese subjects. This is the first comprehensive investigation into how omental AT immunity changes with obesity and T2D in humans, revealing important similarities and differences to paradigms in mice. These data increase our understanding of how pathways of immune regulation could be targeted to ameliorate AT inflammation in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available