4.7 Article

Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model

Journal

EUROPEAN JOURNAL OF AGRONOMY
Volume 102, Issue -, Pages 1-13

Publisher

ELSEVIER
DOI: 10.1016/j.eja.2018.10.008

Keywords

WOFOST; PROSAIL; Canopy reflectance; Data assimilation; Winter wheat yield estimation

Categories

Funding

  1. National Natural Science Foundation of China [41671418, 661136006]
  2. Science and Technology Facilities Council of UK (Newton Agritech Programme: Sentinels of Wheat)
  3. Foundation for Key Program of Beijing [D171100002317002]
  4. STFC [ST/N006798/1] Funding Source: UKRI

Ask authors/readers for more resources

To estimate regional-scale winter wheat (Triticum aestivum) yield, we developed a data-assimilation scheme that assimilates remotely sensed reflectance into a coupled crop growth-radiative transfer model. We generated a time series of 8-day, 30-m-resolution synthetic Kalman Smoothed reflectance by combining MODIS surface reflectance products with Landsat surface reflectance using a KS algorithm. We evaluated the assimilation performance using datasets with different spatial and temporal scales (e.g., three dates for the 30-m Landsat reflectance, 8-day and 1-km MODIS surface reflectance, and 8-day and 30-m synthetic KS reflectance) into the coupled WOFOST-PROSAIL model. Then we constructed a four-dimensional variational data assimilation (4DVar) cost function to account for differences between the observed and simulated reflectance. We used the shuffled complex evolution-University of Arizona (SCE-UA) algorithm to minimize the 4DVar cost function and optimize important input parameters of the coupled model. The optimized parameters were used to drive WOFOST and estimate county-level winter wheat yield in a region of China. By assimilating the synthetic KS reflectance data, we achieved the most accurate yield estimates (R-2 = 0.44, 0.39, and 0.30; RMSE = 598, 1288, and 595 kg/ha for 2009, 2013, and 2014, respectively), followed by Landsat reflectance (R-2 = 0.21, 0.22, and 0.33; RMSE = 915, 1422, and 637 kg/ha for 2009, 2013, and 2014, respectively) and MODIS reflectance (R-2 = 0.49, 0.05, and 0.22; RMSE = 1136, 1468, and 700 kg/ha for 2009, 2013, and 2014, respectively) at the county level. Thus, our method improves the reliability of regional-scale crop yield estimates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available