4.8 Article

Organophosphite Antioxidants in Indoor Dust Represent an Indirect Source of Organophosphate Esters

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 4, Pages 1805-1811

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b05545

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Precise determination of organophosphate esters (OPEs) in the environment is crucial to estimating their potential toxicity effects on human health. Previous studies have mainly focused on OPEs from direct sources. This study explored a potential indirect source of OPEs: the oxidation of organophosphite antioxidants (OPAs). OPAs are frequently used to retard degradation in polymers through their oxidation to OPEs. In this work, five OPAs [tris(2-chloroethyl) phosphite, triphenyl phosphite, tris(2,4-di-tertbutylphenyl) phosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite, and trisnonylphenol phosphite] could be identified, with geometric mean (GM) concentrations from 2.46 to 70.4 ng/g, in indoor dust. Their oxidation products, triisodecyl phosphate (TiDeP), tris(2,4-di-tert-butylphenyl) phosphate (AO168=O), bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphate (AO626=O-2), and trisnonylphenol phosphate (TNPP), were found at significantly higher GM concentrations (30.5-3759 ng/g). Surprisingly, two novel oxidation products AO168=O (GM: 3759 ng/g) and TNPP (GM: 2185 ng/g) had higher concentrations than tris(2-chloroethyl) phosphate (GM: 1608 ng/g) and triphenyl phosphate (GM: 1827 ng/g), which are well-known OPEs. These four novel OPEs (TiDeP, TNPP, AO168=O, AO626=O-2) contributed S4.1% to the total concentration of the eight OPEs. The present investigation demonstrates that oxidation of OPAs is an important indirect source of novel OPEs in indoor environments. This is the first detection of four OPAs and their newly identified OPE oxidation products in indoor dust.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available