4.8 Article

Substrate Diffusion within Biofilms Significantly Influencing the Electron Competition during Denitrification

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 1, Pages 261-269

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b05476

Keywords

-

Funding

  1. National Natural Science Foundation of China [51508355]
  2. UTS Chancellor's Postdoctoral Research Fellowship
  3. CTWW Industry Partner & ECR Mentoring Scheme funding
  4. Australian Research Council (ARC) Future Fellowship [FT160100195]

Ask authors/readers for more resources

A common and long-existing operational issue of wastewater denitrification is the unexpected accumulation of nitrite (NO2-) that could suppress the activity of various microorganisms involved in biological wastewater treatment process and nitrous oxide (N2O) that could emit as a potent greenhouse gas. Recently, it has been confirmed that the accumulation of these denitrification intermediates in biological wastewater treatment process is greatly influenced by the electron competition between the four denitrification steps. However, little is known about this in biofilm systems. In this work, we applied a mathematical model that links carbon oxidation and nitrogen reduction processes through a pool of electron carriers, to assess electron competition in denitrifying biofilms. Simulations were performed comprehensively at seven combinations of electron acceptor addition scheme (i.e., simultaneous addition of one, two or three among nitrate (NO3-), NO2-, and N2O) to compare the effect of electron competition on NO3-, NO2 and N2O reduction. Overall, the effects of substrate loading, biofilm thickness and effective diffusion coefficients on electron competition are not always intuitive. Model simulations show that electron competition was intensified due to the substrate load limitation (from 120 to 20 mg COD/L) and increasing biofilm thicknesses (from 0.1 to 1.6 mm) in most cases, where electrons were prioritized to nitrite reductase because of the insufficient electron donor availability in the biofilm. In contrast, increasing effective diffusion coefficients did not pose a significant effect on electron competition and only increased electrons distributed to nitrite reductase when both NO2- and N2O are added.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available