4.8 Article

Sensing Coated Iron-Oxide Nanoparticles with Spectral Induced Polarization (SIP): Experiments in Natural Sand Packed Flow Through Columns

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 52, Issue 24, Pages 14256-14265

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b03686

Keywords

-

Funding

  1. Canada Excellence Research Chair (CERC) Program
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. Chevron Energy Technology Company

Ask authors/readers for more resources

The development of nanoparticle-based soil remediation techniques is hindered by the lack of accurate in situ nanoparticle (NP) monitoring and characterization methods. Spectral induced polarization (SIP), a noninvasive geophysical technique, offers a promising approach to detect and quantify NPs in porous media. However, its successful implementation as a monitoring tool requires an understanding of the polarization mechanisms, the governing NP-associated SIP responses and their dependence on the stabilizing coatings that are typically used for NPs deployed in environmental applications. Herein, we present SIP responses (0.1-10 000 Hz) measured during injection of a poloxamer-coated super paramagnetic iron-oxide nanoparticle (SPION) suspension in flow-through columns packed with natural sand from the Borden aquifer. An advective-dispersive transport model is fitted to outflow SPION concentration measurements to compute average concentrations over the SIP spatial response domain (within the columns). The average SPION concentrations are compared with the real and imaginary components of the complex conductivity. Excellent correspondence is found between the average SPION concentrations in the columns and the imaginary conductivity values, suggesting that NP-mediated polarization (that is, charge storage) increases proportionally with increasing SPION concentration. Our results support the possibility of SIP monitoring of spatial and temporal NP distributions, which can be immediately deployed in bench-scale studies with the prospect of future real-world field applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available