4.8 Article

Coupled Sulfur and Iron(II) Carbonate-Driven Autotrophic Denitrification for Significantly Enhanced Nitrate Removal

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 3, Pages 1545-1554

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b06865

Keywords

-

Funding

  1. National Science Foundation of China [21707156, 51878652]

Ask authors/readers for more resources

Sulfur-based denitrification process has attracted increasing attentions because it does not rely on the external addition of organics and avoids the risk of COD exceeding the limit. Traditionally, limestone is commonly employed to maintain a neutral condition (SLAD process), but it may reduce the efficiency as the occupied zone by limestone cannot directly contribute to the denitrification. In this study, we propose a novel sulfur-based denitrification process by coupling with iron(II) carbonate ore (SICAD system). The ore was demonstrated to play roles as the buffer agent and additional electron donor. Moreover, the acid produced through sulfur driven denitrification was found to promote the Fe(II) leaching from the ore and likely extend the reaction zone from the surface to the liquid. As a result, more biomass was accumulated in the SICAD system compared with the controls (sulfur, iron(II) carbonate ore and SLAD systems). Owing to these synergistic effects of sulfur and iron(II) carbonate on denitrification, SICAD system showed much higher denitrification rate (up to 720.35 g.N/m(3).d) and less accumulation of intermediates (NO2- and N2O) than the controls. Additionally, sulfate production in SICAD system was reduced. These findings offer great potential of SICAD system for practical use as a highly efficient postdenitrification process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available