4.7 Article

Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge

Journal

ENERGY
Volume 171, Issue -, Pages 809-818

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.01.082

Keywords

Co-combustion; Sludge recycling; Bottom ash; Slagging tendency; Gas pollutants; Heavy metals

Funding

  1. National Natural Science Foundation of China-China [51606067]
  2. Natural Science Foundation of Hebei Province-China [E2017502004, E2016502058]
  3. Beijing Natural Science Foundation-China [3174056]
  4. Fundamental Research Funds for the Central Universities [2018M5109]

Ask authors/readers for more resources

A municipal and a coal-coking industrial sludge (MS and CS) were separately co-combusted with bituminous coal at a sludge mass ratio (SMR) of 10%-50%. Quartz, larnite, gehlenite, mayenite, and calcium sulfate were formed during co-combustion. Slight or medium slagging was predicted to occur when slagging tendency was assessed based on the mineral components and fusion temperature of the ash. The SO2 emission peak at the devolatilization stage increased with increasing SMR of MS but only slightly changed with increasing SMR of CS. SO2 emission at the char combustion stage was suppressed due to the sulfur retention effects of sludge ash. NO, HCN, and N2O were the main emission forms of N-containing gases. With increasing SMRs of MS and CS, HCN emissions became increasingly prominent, whereas NO showed only a slight increase and even decreased. In addition, the volatilization percentages (VP) of Cd, Zn, Cr, and Ni decreased. By contrast, the VP of Pb increased when coal was combusted with CS because Pb was considerably influenced by high Cl. The concentrations of Cd, Cr, Ni, Pb, and Zn in the bottom ashes were determined and satisfied China's threshold limit value for landscaping land application or soil amendment. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available