4.7 Article

Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O

Journal

ENERGY
Volume 167, Issue -, Pages 688-697

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.11.019

Keywords

Biomass gasification; Slag heat recovery; H2O and CO2 mixture; Syngas yields; Polluting gas releases

Funding

  1. National Science Fund for Distinguished Young Scholars [51522401]
  2. National Natural Science Foundation of China [51472007, 51772141]
  3. Shenzhen Science and Technology Innovation Committee [ZDSYS201602261932201, JCYJ20170412154335393, KQTD2016022619584022]
  4. Southern University of Science and Technology [G01296001]
  5. Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control [2017B030301012]

Ask authors/readers for more resources

The mechanisms of a novel method, biomass gasification under a mixed agent of CO2 and H2O using the thermal heat in high temperature (1450-1650 degrees C) slags, were identified in this study for the purpose of biomass treatment in the agriculture and slag disposal in the steel industry. The characteristics of gasification equilibriums, with varying factors including temperature, pressure, reacted CO2 and H2O amounts, were clarified especially the roles of hot slags. Both the target syngas including CO, H-2 and CH4 and the polluting gases comprising of NH3, NO and NO2 were considered here. The results indicated that compared to the limited influence of blast furnace slags, the introduction of steel slags remarkably increased both the syngas yields and the char formed. Furthermore, it was found that there existed a transition temperature range for the H-2 production and NH3 release, providing significant ideas for syngas optimization. The present study could thus not only offer important clues for the scientific understandings of biomass gasification using the thermal heat in hot slags but also show important guidance toward utilization of this emerging method. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available